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Abstract 

Methods are described for calculating the energy levels for 

the overall rotation and internal torsion of molecules consisting 

of a rigid symmetrical top attached to a rigid asymmetrical frame- 

work in such a way that the symmetry axis of the top coincides with 

a principal axis of the molecule. Probable examples are nitromethane 

and CH-BFg. Matrix perturbation methods are employed to obtain 

finite rotational secular equations valid in each of the coses: 

low barrier, high barrier, low asymmetry. These secular equations 

are modifications of the ordinary Wang equation for the rigid 

asymmetric rotor and can usually be solved by the continued fraction 

method. The symmetry groups applicable to this problem are also 

discussed. 
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Molecules such as CE,3?0 or BitimetbMaF ;-XH,3'Cl23 tey shew overall, rotation, 

internal torsion of the methyl group relative to the SfC^ group, &ni vibratier;.. 

Microwave spectra due to these motions have "bee^. recently reported for 
nitromethane by Tanneribaum. Johnson, Myers> and Gwiua. d. Chem. Phys. 22y 

9>*9  (195*0. 

For the purpose of treating the overall rotation and internal torsion, it is 

convenient to think of the EF2 or SC- grc-s> «.s a rlild framework, to which is 

attached a symmetrical top (CH_) whish nr.sy rotate or vis-rate about an axis 

colinear with a principal axis of inertia of the whole mclecttle. Furthermore, 

the three principal moments of inertia cf the whole rco"ec-oile are all different 

and are uninfluenced "by the internal orientation cf 1fta st*-ached top. The 

calculation of the rotational ani internal torsiTZJS£.  e^.crgv" levels of this 
r 

class of molecules is the subject cf the present 'ys^tfie* 

2 
The class treated here is In some ways sierr-'le.: ..oas the.case of methyl 

alcohol which has been thoroughly studied by Bennis;:; s,s.d cewprkers (see 
Ivash and Dennison, J. Chem. Phys. 2i5 180% "(195k) } %u& the approach differs 
somewhat. 

Model and Coordinates 

The model then consists of two connected rigid bodiess  one ithe top) 

"*  For a discussion of vibrations in molecules of this type, see B. L. 
Crawford, Jr. and E. B. Wilson, Jr., J. Chem„ Phys. 9., 323 (19^1). 

having two equal principal moments of inertia about axes perpendicular to a 

principal axis of the whole molecule. There are four degrees of freedom, 

three for overall rotation and one for rotation of the top about its unique 

axis. See Fig. 1. 



Let x,y,z be moving cartesian axea rigidly attached to the framework part 

of the molecule and coincident with the principal axes of inertia of the whole 

molecule (origin is at center of mass of whole molecule). The z axis will 

coincide with the symmetry axis of the top. The three Eulerian angles ©, <p, 

and ^C of x,y,z, relative to space-fixed axes will describe the overall orientation 

of the molecule, while the angle a will give the relative orientation of top 

and framework. 

The Hamiitonian 

k 
The kinetic energy has previously been written as 

B. L. Crawford, Jr., J. Chem. Phys. 8, 273 (191*©). 

2T « I 0}2 +  I CO2  + I U)2  + ijt2 + 2ljta) (1) xx   y y   z z   a    a  s 

in which I is the moment of inertia of the top about its symmetry axis, 

I_* I_> I are the principal moments of the entire mo. -cole, and 6J , CO   > x  y 7. x   y 

(X)„  are components of angular velocity of the framework along x,y,z. It has z 
5 

been usual' to eliminate the cross-product terms by means of a transformation, 

5 See K. S. Pitzer and W. B. Gwinn, J. Chem. Phys. 10,' 1*28 (19^2). 

but this will not be done in this treatment. 

To obtain the Hamiitonian form, use the definitions of the momenta: 

p = <?T/aa, Px » dT/36^ etc. (2) 

This leads in the usual way to the form 

H - AP 2 + BP 2 + CP 2 + Fp2 - 2CpP„ + V(a) (3) 
X      jT      Z Z 



in which all angular momenta are in units "K = h/2TT and 

V(a) is the potential energy restricting the internal rotation. In the 

model used here, the coefficients are all constants. Note that C involves 

the moment of inertia of the framework part alone while F contains the reduced 

moment of the two parts of the molecule. 

The quantities P , P and P were defined in Eq. (2) hut hy using the 
z  y    z 

basic definition of angular momentum it is easy to show that they are equal 

to the components of the total angular momentum of the molecule (in units h/2Jf), 

including the contributions arising from any internal rotation of the top. 

Similarly it can be shown that p is the total contribution of the motion of 

the top atoms to the z component of angular momentum, including both the 

internal and overall motions. 

This classical Eamiltonian becomes a quantum mechanical operator or 

alternately a matrix by regarding P , P , P and p as operators or matrices. 
x  .y  m 

The commutation rules are 

6 0. KLein, Zeits. f. Physik 58, 750 (1929). 

PjPk - PkPj - -iP^, (J,k, £= x,y,z in cyclic order)        (5) 

and 

pPj - PjP = 0        J = x,y,z (6) 

The first rule 1B the standard one for the components of angular momenta along 

molecule-fixed axes while the second follows from the fact that, as an operator 



p - - iO/3a)fr^^ (7) 

whereas the P.'s do not itiTolve a. 

By inserting in H tise expressions for the P, in terms of p , p^ 

and p< and in turn treating these latter momenta as differential operators, 

the SchrOdinger ware equation in the variables 0,rf,Y., a could he written 

down, hut this is not necessary for the solution of the problem. 

To simplify the later equations, let 

5f%  - [l - D(Px
2 + Py

2 + P^jj /(CD) (8) 

in which D = \ (A + B) (9) 

Then 

with 

M '  - b(P 2 - P 2) + P 2 - dpPw + fp
2 + V'(o)     (10) 

(11) 

b o \ (A - B)/(C - D) 

d - 2C/(C - D) 

f - F/(C - D) 

V - V/(C - D) 

Then if_AJis an eigenvalue of *}£'',  the energy is given by 

W - J(J + 1)D + (C - D)-/L' (12) 

94 ,  as well as H, is diagonal in J and M so only one JM block need be 

considered at a time. 

Symmetry Considerations 

It is well known that the rigid asymmetric rotor wave equation is invarisob 

under the group of 160* rotations about each of the principal axes. These 

operations variously change the signs of the P,, which leaves the energy 



expression unaltered. In the present problem the cross-term in pF is not 

invariant unless p changes sign when P does. If the potential energy V(a) 

is an even function of a, then the four operations E, C , C , C whose effects , s *  x-  y' z 

are listed below will still leave H invariant and wiil form a group (the 

"four-group") as before. 

Table I. Effect of Fcirr-'-roup Symmetry Operations 

E c* cr C x y z 
P,—»P.     P —^P P —>F        P —*P i    i      x w  x y   y z    z 

P —> -P        P —*> -P       P —> -P y,z   y,z      x,z   x,z      x.,y   x,y 

P—> P      P —>-P P —> -P I > P 

(a—>a)           (a—B>-a) (a—*-a) v-"*—>a) 

(o —> o) (o —> TT-o) (e—»TT-$} (o —> ©) 

ff—><P) ft>—»7T+^ fP~->7T+<?) ''4>—>4>) 
(%-**J Oc-^ati-jc)     (?c->Tr-^j       (X-^TT+X) 

Consequently every solution of the wave equation will belong to one of 
7 

the fou~ species A, B , B , B of this group as in the case of the asymmetric x  y  z 

7 1 See G. W. King, R. M. Hainer, and P. C, Cross, J. Chem. Fhys. 11, 
27 (19^3). 

rotor, but here the part of the function involving a must be included. Further, 

any secular equation or energy matrix can be factored into at least four factors 

by using the above symmetry. 
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Often V(a) will possess additio:ael <?ysanet:ry properties.    For expanse,  i:o 

nitromethane, it presumably is invariant i.xider a—>C* f 2.TCS./6? where 

k = 0,1,2,3,U,5.    I* addition, a—><27Tk/6)   - a shr«£A als^ leave V un-.hange-i. 

These operations are isomorphous with therein* pgf^ Cgv 1«t this group is 

not here used in the same way as when gr.->up theory U allied to the vibration 

problem. 

The symmetry of V(a) carrot be indiscriminately applied to E hecause p 

appears in the cross term.    However, the "rotation" a—»« * STTk/a  {here 

s =6) do leave H invariant.    So do the "reflections" a —=>(27Tfc/s)  - a if 

simultaneously P  > -P  .    The four-grczp opera-iicisf l&fftA earlier and the 

s internal rotations a—>a + 277k/s generate » fNS? <* V> Iterations. 

Table II shows the result when s =3, in f» «Mk Itl* VHNft is iaomci-phous 

with the group Cgy. 

Table II. Character • Table 1 for O&ae a i i 3* 

Class     1 E *s 3C C, J x 3 0 z so s. z 3 3C C_ 
y 3 

A 1 1 1 1 1 l 

B z 1 1 -1 1 -i 

El 2 -1 0 2 -l 0 

B 
X 

1 1 x -1 m T •i 

\ 
1 1 -1 -1 -1 l 

E2 c -1 0 -2 1 0 
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The one-dimensional species are here labelled so that they correspond to the 

species for the subgroup V. The degenerate species E1 would become A + B * 

in the subgroup vhile E« would yield B + B . 

The case s «• 6 is easily constructed from the above table because the 

new group is obtained by introducing the additional operation Cg which 

causes a—>a + TT. This commutes with sll operations above so the new group 

has twice as many classes and twice as many species as the old. See Table III, 

Table III. Character Table for Case s • 6. 

E 
*j 

3CXC5 Cz *.s "Vs c6 *?\ 5W6 c*c6 acsc3C6 VJ0! 
Ae 1 1 1 1 1 1 l 1 1 l 1 i 

B*. 1 1 -1 1 1 -1 l 1 -l l 1 -i 

Ble 2 -1 0 2 -1 0 2 -1 0 2 -l 0 

xe 
1 2, 1 -1 -1 -1 1 1 1 -1 -1 -1 

By 
1 1 -1 -1 -1 1 1 1 -1 -1 •1 1 

h* 2 -1 0 -2 1 0 2 -1 0 -2 1 0 

Ao 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

B*o 1 1 -1 1 1 -1 -1 -1 +1 -1 -1 +1 

Blo 2 -1 0 2 -1 0 -2 1 0 .2 1 0 

B xo 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 

yo 
1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 

B2o 2 -1 0 -2 1 0 -2 1 0 2 -1 0 



These higher symmetries permit further factoring of the secular equation 

or energy matrix if the expansion functions are chosen to have symmetries in 

accord with the various species. 

The dipole moment^ for this model would ordinarily he along the z axis. 

If this is the case,ju will have the symmetry B in Tahle II and in the case 

s • 6 it will belong to B . Consequently, for this case, the selection rules 
ZG 

for dipole absorption will he (s = 3): A«-*Bz, Bx^—»B , \*~*\*  Eg*—* Eg. 

The rules will apply for the case s = 6 with the additional condition that e 

species go only into e species, and o species into o species. 

Nuclear permutation effects will he governed by the symmetry also. The 

subgroup which governs the exchange of the oxygen atoms in nitromethane or 

the fluorines in CH_BFp consists of E and C c| since to exchange these atoms 

requires that a<—*a + 'IT; %*—*X+ 7T, which is C c|. A , B , E. , B , 

B , E« are even, the other species odd to this operation. Therefore only 

the first set can occur in nitromethane (with  0). In CIL,BF2 these species 

will have three times the fluorine spin weight of the others. The operations 

2 
C,, C_ exchange two pairs of H atoms in the above molecules. All the non- 

degenerate species are of spccifts A in this subgroup, all the degenerate species 

will be degenerate in the subgroup. The two kinds of levels will then have 

equal proton spin weight. 

The Energy Matrix 

If the asymmetry (b) were zero and there were no barrier (V')> the 

reduced Eamiltonian 3/'would be 

Pz
2 - dpPz + fp

2 (13) 
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which yields a diagonal matrix with the basis functions 

S^^f ) e^e1^ (ik) 

in which S is the 0, f> factor of the symmetric rotor wave function and 

K = Oj+l,^, = = , +J j m = 0,+l,+2, ... oo . (15) 

These functions may be used to set up a matrix for the general form of 

Of',  i.e. the true wave functions may be expanded in terms of the functions 

above. The asymmetry term in b will give off-diagonal elements the same as 

those which occur with the rigid asymmetric rotor (with C calculated for 

framework only). The barrier potential V is usually assumed to be of the form 

V' « I Vo (1 * cos 8 a) = I Vo " i Vo (eiS° + e"iS0£> (l6) 

in which s is the number of equivalent minima and (C-D)V' = V is the barrier 

height. The barrier will also introduce off-diagonal elements. The matrix 
Q 

for3t'will then nave the non-vanishing elements 

Q 
See ref. 7 for the matrix elements of P , P , and P . x'    y' 2 

J*V    B        - -V'     v        - i V' = K2 - dmK + fm2 
Km,Km Km,Km 2    o 

si 

^K,m;Kt2,m = V " S+fr ~ <•4 [^ ' **W (17) 

Here the constant «• V' has been Incorporated so that the eigenvalues of Jy7 

are related to those of->/• by 

-A-'=-A-+lVo (l8) 
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Unless the "barrier height is zero, this form of J4" corresponds to an 

infinite secular equation. Note, however, that there are no elements connect- 

ing even with odd K values so that the secular equation factors into one for 

even and one for odd K values.  (Thi6 is part of the factoring into different 

symmetry species.) 

Case of Free Internal Rotation 

When the barrier height is zero, J « - j- V' = 0 and the energy matrix 

becomes diagonal in m. The secular equation therefore factors into one 

block for each value of m, as veil as into even and odd K factors. 

The secular equation for a given value of J,H,m has the elements 

(KlK) « K2 - dmX - A; x 

(Kjl + 2) - D^K+2 = Ihjfj
2 - (K±1)

2J[(J+1)2 - (K+l)2Jj (19) 

The energy W is then related to the roots A "by the equation (see Eq. 12). 

W « J(J + 1)D + ^ VQ + Fm
2 + (C-D)A (20) 

o 
This secular equation is similar to the Wang equation for the ordinary 

9 S. C. Wang, Phys- Rev. ^h, 2k?  (1929). 

rigid asymmetric rotor except for the added term -dmK on the diagonal. This 

term spoils the additional factoring possible in the rigid case. 

As an example, consider the case J = 5, K even. This factor becomes 
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l6 + k md -X 6 \ftx> 0 0 0 

6\/3~h k + 2 md -X ^10 b 0 0 

0 V^210 b -A \/210 b 0 

0 0 \/210 b U - 2 md  - •A 6 V5"b 

0 0 C 6 Vj~b 16 - h md -A 

-0 

(21) 

For each non-vanishing value of |m|, there will be two identical such 

equations, so all levels are doubly degenerate unless m = 0, In the latter 

case, the ordinary rigid rotor levels are obtained, except that the moment of 

inertia about the z axis is the moment of the framework group (I - I ) as 

already seen. 

The energy levels in the free rotation case must of course conform to 

the symmetry restrictions given for the general case. Thus, with s • 3 or 6, 

if m is not a multiple of J, the symmetry is one of the degenerate £ species. 

If m is a multiple of 3, the level.? involve A or B species which would be split 

into non-degenerate components if there were a sufficient barrier. If K is 

even., the species may be A, B or E. j if K is odd, B , B or E0. If e « 6, 

the species further divide into even or odd (denoted by subscripts e and o) 

according as m is even or odd. 

The selection rules for dipole radiation involve 

AJ = 0, +1 (22) 

as for the rigid asymmetric rotor. The symmetry requirements discussed 

earlier must also be met. If/A *s along the z axis, X cannot change parity. 

The rule for m is 

£m = 0 (23) 
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This follows from the fact that the dipole moment does not depend on a 

whereas the wavefunctlon involves a only through the factor 

ima 
e 

For small asymmetry the energy levels may he expanded in powers of b. 

For large values of the quantum number n, the diagonal elements of the 

secular equation will he large and the first terms in the expansion in powers 

of b may he adequate. Second-order perturbation theory then gives 

X - K2 - md K + (b2/8) [[j2 - (K-lf][(.J+lf-{K-lfj/{2K-mdi-2) | 

-(b2/8) j [^-(K+l)2] [(J+1)2-(K+1)^| /(2K-md+2)j + ... (24) 

For very large values of m, 

A. > K2 - md K. (25) 

For transitions with AJ • 1, AK = 0, Am • 0, the transitions with large values 

of m would then tend to converge (from both sides) to a hand head. Of course 

the intensities of these higher members would tend to decrease because of the 

unfavorable Boltzmann factors. 

Case of Low Barrier 

If the barrier height V is small but not negligible (compared with the 

quantity F), a useful solution can be obtained with the Van Vleck perturbation 

method.   The reduced hamlltonlan matrix Jr of Eq. IT is split into an 

See E. C. Kemble, The Fundamental Principles of Quantum Mechanics, 
McGraw-Hill, New York, I937T p. V?1*. 

unperturbed, completely diagonal matrix sr    with diagonal elements 

^£m,Km = K2 - dmK , fm2 (26) 



Ik 

and a perturbation Jr    with elements 

*****+• W -efo - ^fl [v+»* - (K±I)
2
]) 

5 

V (27) 

The Van Vleck transformation reduces the elements off-diagonal in m to order 

5 . If theBe are then neglected, the secular equation becomes 

(KJK) = K2 - dmK + (l/s) J2 f (l/]u-(aii+s)f]) - (l/[Kd-(2m-s)f])) -A 
I " J  (28) 

<KlK±2>=VKt2 

This secular equation is similar in its properties to that for free rotation. 

It is not valid, however, for the case m = + *• s, s even, because then a near 

degeneracy occurs.    For this case, the unperturbed states with m - + «• s must 

both be taken into consideration.    The equation then has the non-vanishing 

elements 

(|,K(|,K) = K2 - I d S '< + (l/s)|T$2/(Kd - 2sf)J - \ 

(-|,K|-|,K) - K2 + \ ds K - (1/s) jj2/(Kd + 2sf)]]-A 

(|,K 4,K) =  j (29) 

rS je (?,K|?,K+2) =\>Kt2 

(4,K|-|,Kt2). = bK>K+2 
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Because of the symmetry (g,K +|-,K') = (|>-K + %, -K) this larger secular 

equation can he factored into two factors, similar to the way in which the 

Wang equation is factored- This leads to a splitting of the degeneracy. 

When m is not a multiple of «• s, the levels are inherently doubly degenerate 

for all harriers. For m a multiple of ^ s the degeneracy is ultimately split 

at high enough barriers. With the approximation given here this splitting vill 

not appear except for m » «• s. The higher the multiple of «• B the higher the 

order of perturbation required to demonstrate the splitting. 

The quantum number m is no longer a good quantum number when there is 

a barrier but if V is small it can still be used to label the levels. The o 

selection rul* £a  = 0 is nc longer exact and must be replaced by the rigorous 

symmetry selection rules given earlier. 

High Barriers 

If the harrier is sufficiently high so that the torsional levels of a 

given symmetry are widely spaced compared with the rotational levels, a 

different perturbation treatment is possible, in which the asymmetry and the 

coupling term are treated as perturbations by the Van Vleck procedure. This 

leads as before to a rotational secular equation. The unperturbed operator 

for the energy is 

H = DP2 + (C-D) P2 + Fp2 + V(a) (30) 
0 Z 

while the perturbation operator is 

^ = \  (A-B)(P2 - P2) - 2CpPz (31) 
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H can be diagonalized vlth the basis functions 

«W°'*> ^\i.-^ (32) 
in which symmetric rotor functions are used as before and the U's are eigen- 

functions of 

[PP
2
 + v(a)] u. -.- i^ uv^ (55) 

The torsional states are described by the quantum numbers v)i,  where v is the 

principal quantum number of the vibrational level, and X is a degeneracy index. 

For the potential function of equation (16);, the non -degenerate (j£ = 0) 

eigenvalues of the torsional equation (53 )> which is now related to the 

Mathieu equation, can be obtained from published  tabulations through the 

Tables Relating to Mathieu Functions, Columbia University Press, 
Hew York, 1951. 

connection 

in which 

Evo = K 8 F *er(S) or i *    Fb°r(S) (3*0 

S = (Vs2)(V0/F) (35) 

and the eigenvalues be and bo are given in the tables as functions of the 

parameter S. The values of the quantum number v = 0,1,2,3,14-, etc. are 

identified respectively with the eigenvalues beQ, bo„, ben, boj,, be. , etc. 



IT 

The degenerate levels have not "been tabulated but can "be calculated to any 

desired degree of accuracy "by expansion of the eigenfunction in a Fourier series. 

Another method is, however, easier and is reasonably accurate for high barriers. 

Make the substitution 

U v. - e1^ ufa) (37) 

in Eq. (33), where ^ = 0, 1, or -1. The equation for u is then 

jVp2 + 2fltp + Ftf2 + VJ u = EyJ.u (38) 

If K = 0, the equation gives the non-degenerate eigenvalues and their eigen- 

functions, both of which are available as tabulations. If K = +1, the 

degenerate levels are obtained. Bnt the terms involving J6 in Eq. (38) can 

he considered as perturbations on the )( = 0 case, if the barrier is high 

anough. The term in )fc~  obviously just subtracts from E ,». To the second- 

order the effect of the terms in $ and K is 

"r-r 1 2 

Evtf vo V /(Evo " Vo*   (59< 

in which the sum is over all the non-degenerate levels and 

r< -i    \   u*o Ouv,o/aa)da 

£~*   *vu\j)I* Avm ^   A-»V2 (to) m=-oo 7 la*i>o        m»-oe 

Here    we have expanded the non-degenerate eigenfunctions as 

o   (a) - ZL  A    e1*^ 
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These Fourier coefficients may be found from the tabulations of reference 11 

by the identification 

A  cV = A  . - (-l)1^-.. (S),      k l  0 v,-sk   v,sk  v '      2kx "       r 

A   = 2De (S) for even V v,o    ox ' 

Av,-sk - ~Av,sk " t"1^) for odd v 

The perturbation H. of Eq. (31) nov needs to be introduced by the Van 

Vleck procedure. However, for the degenerate torsional states, it is con- 

venient to combine this perturbation vith that given above, yielding the 

secular equation 

(K|K) = K2 - d'Xfe -.A." x 

(K|K + 2) = \v\\f - (K + 1)2J [(J + l)2  - (K + lf]lS 

vith W « J(J+1)D + Eyo + F'tf2 +V\_" (C'-D) 

C  » C(l + ItC/O) 

d'  » 2C(1 + UF^/CC'-D) (fc2) 

F'  - F(l + hT/3) 

^"^f'i^w'l^vo-Vo) 

b'  = |(A-B)/(C'-D) 

Very High Barrisrg 

If the barrier V is sufficiently high, the lover energy levels should 

approximate those of a rigid rotor with moments of inertia I , I , I x  y  z 

(not I  - I ) and a harmonic torsional vibrator with a reduced moment of 

inertia 
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and potential energy 

| (dVto2)^2 (kk) 

This result can be shown to follow from 2q. (kl)  and (42), since 

I4R0  > -1 (45) 

for high barriers in. which harmonic oscillator functions can he used for 

Uyo in Eq. (to). 

The energy levels of rotation are then calculable by the standard methods 

used for the rigid asymmetric rotor. The torsions! levels will be degenerate, 

three-fold if n = J, six-fold if n = 6. However, some of this degeneracy may 

be eliminated when permutation symmetry occurs, as in nitromethane, whose 

levels will be only three-fold degenerate. 

Case of Small Asymmetry 

In cases for which the approximations so far described are all inadequate, 

12 
another approach can be used, " as long as the asymmetry of the molecule is 

12 
This is very close to that introduced by Dennlson, ref. 1. 

small. Let the reduced energy matrix 3r of Eq. (10) be set up in terms of 

the basis functions 

in which S is a symmetric rotor function and CV_K(ot) is a periodic function 

of a which is an eigenfunction of the equation 

[fp2 - dKp + V'(a$K;K(a) - wyK^K(a) (Vr) 
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with eigenvalue W . K enters as a parameter. The non-vanishing matrix 

elements for Jr then become 

^vK,vK " ^ + WvK 

^v,K;v',K+2 *° *K,K+2 AvK,v'K+2 **' 

2"" 
where \,K;v',Kt2 " TV^Vy.,K+2 

te' (*9) 

which enters because /^s for different K's are not orthogonal. 

The existence of the terms off-diagonal in v spoils the factoring into 

v-blocks hut these terms are normally small and can be reduced to lover order 

by a Van Vleck transformation. This yields a rotational secular equation 

(KJK) » K2 + WTK - -A2 

' 2 V^ ' I |2 / 
lbK,K+2i    ^7*   rvK,VK+2| /(WvK " WVK+2J 
'  "» •"•+•'" 

+   KKJ2  21   |^>r,K__o I 2/<W^ - WT,K_2) (50) 

(K|Kt2) - bKK±2 A^^±2 

(K|Kt10-b^K+2bKi2^   2L     \*tr<Kt2 VKA2,VK+4 

"vK       v'K+2 

Koehler and Dennlson ^ have shown that the quantities W     can be obtained 

* J. S. Koehler and D. M. Dennlson, Phys. Rev.  57, 1006 (1940). 
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(51) 

frcnc a continued fraction of the form 

5  o M^-5 - M_2- 5 - r^ - ... 

1    1    1 

-Mi'3 " "F3 - "3" 5- ••• 
in which 

g - [(CK/F) -^)J/B,^= 0, 1, 2,  s-1 (i>2) 

WnK " I Vo " CcV/FCC-D)] + s2f €, 

To calculate the A's continued fractions may also be used. The function 

y^jr  is expanded in a Fourier series; 

>£-Il  A„  e1^  . 

This is substituted in the differential equation (kf)  and leads to a set of 

s insult aneous equations for the coefficients A: 

A „    + G A „.  + A „    « 0 nK,2i-s   m nK,m   nK,m+s 

where . p 

G = =-M - 1 - (2PB /v )T m  2 e      v   ' o' J 

These simultaneous equations yield the continued fraction 

nK,iiH-8 _ - 1   1 
A „   ~ G - G   - G „ nK,m     ra   m+s   m+2s 

The normalization condition z 



22 

enables the determination or the A'3 to be completed. 

There will of course te an infinite number of roots for each value of K 

and K . These roots are most conveniently calculated if none of the denominators 

M| ~ 5" ••* are sma1l- If 9ias °f these should turn out to be small, the continued 

fraction should be transformed so that the offending My> appears in the leading 

positionj i.e» 

-£= M- .   I I 

(53) 
i x 

"M£+-r^ -MJ2+2"5° ••• 
For each root sought, there will be an appropriate choice of the leading term 

HA which will cause the most rapid convergence. 

The various values of ^\ yield the different component levels which in 

the limit of high barriers sane  together to form a (degenerate) harmonic 

oscillator level. However, Koehler and Dernison *' showed that the roots 

are periodic functions of K (as may also be seen from 35. 51) with period 

Fs/C. Furthermore, if this periodic function is known for the case K.*  0, 

it can be used to calculate the roots for the other values of )€ by a phase 

shift," i.e. by reading off the value of H for 

K' = K - ¥)R/C 

from the same periodic curve used for K-  0. 

For sufficiently high barriers the dependence of £ on K and >£ vanishes. 

This suggests expanding £ ms  a Fourier series (only cosine terms will appear) 



23 

*[ • j50 + "^ cos 2 77" g + ^2 cos k Tfg + ..,  . 

Fox* high enough harriers only a few terms are required. The coefficients 

"£Q, €,.,, £« can he found hy solving the continued fraction for the necessary 

number of values of g, conveniently chosen to make it easy to solve for the 

required number of E's. The value of "€, can also he obtained from available 

tables  by weans of the relation: 

3 = £ber(S)  or  £bov(S) 

with S » ^V'/s2f = kV l*~S 
O' OS 

Then the A's may he written 

oo 

V^nK-^^I Vl>' n'K'.m uK.m 

In some cases, especially when b is sufficiently low, the (KJK+4) elements of 

the secular equation (50) can be neglected altogether. However, this procedure 

is not always valid. Under such circumstances the secular equation can be 

made easier to solve by various transformations which reduce the order of the 

troublesome K,K+U elements so thct they can be ignored and the remaining equation 
are 

treated by the continued fraction method. These transformations/similar to 

Van Yleck transformations but have to be adapted to the several cases which 

arise because of near-degeneracies and will therefore not be detailed here. 
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